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Abstract Because many bone tumors have a variety of ap-
pearances and are uncommon, few radiologists develop suffi-
cient expertise to guide optimal management. Bayesian infer-
ence can guide decision-making by computing probabilities of
multiple diagnoses to generate a differential. We built and
validated a naïve Bayes machine (NBM) that processes 18
demographic and radiographic features. We reviewed over
1664 analog radiographic cases of bone tumors and selected
811 cases (66 diagnoses) for annotation using a quantitative
imaging platform. Leave-one-out cross validation was per-
formed. Primary accuracy was defined as the correct patho-
logical diagnosis as the top machine prediction. Differential
accuracy was defined as whether the correct pathological di-
agnosis was within the top three predictions. For the 29 most
common diagnoses (710 cases), primary accuracy was 44%,
and differential accuracy was 60%. For the top 10 most com-
mon diagnoses (478 cases), primary accuracy was 62%, and
differential accuracy was 80%. The machine returned relevant
diagnoses for the majority of unknown test cases and may be a
feasible alternative to machine learning approaches such as
deep neural networks or support vector machines that typically
require larger training data (our model required a minimum of
five samples per diagnosis) and are Bblack boxes^ (our model
can provide details of probability calculations to identify fea-
tures that most significantly contribute to truth diagnoses).

Finally, our Bayes model was designed to scale and Blearn^
from external data, enabling incorporation of outside knowl-
edge such as Dahlin’s Bone Tumors, a reference of anatomic
and demographic statistics of more than 10,000 tumors.

Keywords Naïve Bayesmodel . Bone tumor diagnosis

Introduction

Radiographic interpretation of bone tumors requires identifi-
cation and processing of multiple demographic and observa-
tional features that may correlate with a diagnosis, such as age,
sex, tumor margin, matrix, and location [1, 2]. Benign and
malignant bone tumors have a wide variety of appearances.
Because many bone lesions are uncommon or rare, few radi-
ologists develop sufficient expertise to diagnose bone lesions
accurately. In clinical practice, one relies on learning charac-
teristic imaging features of various lesions and recall, both of
which are subject to bias. Thus, among general radiologists,
interpretation of bone lesions can be variable, leading to mis-
diagnosis and suboptimal patient management.

Probabilistic approaches to medical diagnosis have been
implemented in many areas of medicine, including radiology
[3, 4]. Over 50 years ago, Lodwick provided initial proof that
computing odds based on structured annotation of bone le-
sions could improve diagnosis, but the limitations of analog
radiography and the lack of rapid computing technology re-
stricted the impact of his work [5, 6].

Bayesian inference can guide decision-making by comput-
ing the conditional probabilities of multiple diagnoses/classes
(class posterior probabilities) based on observations (attri-
butes/features) and their likelihood (prior probability).
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The conditional probabilities of the array of conditional
probabilities can then be sorted to generate a Bdifferential
diagnosis.^

Alternative quantitative or machine learning approaches
have been investigated such as artificial neural networks or
support vector machines, but these algorithms provide more
abstract Bconfidence scores^ [7]. In 2001, Kahn et al. devel-
oped OncOs, a Bayesian network for classification of 10 bone
tumor diagnoses [8]. In 2005, based on Lodwick’s work,
Richardson developed an online Bayesian-based bone tumor
decision support tool that incorporated five features (age, size
in cm, bone type, longitudinal location, and matrix) to classify
nine tumor diagnoses [9]. Preliminary results from these prior
works are promising; however, these previous systems were
limited to 10 tumor diagnoses. The World Health
Organization (WHO) defines at least 20+ primary musculo-
skeletal osseous tumors [10].

Stimulated by the work of Lodwick and others, we follow-
ed a comprehensive, structured, and standards-based approach
for construction and evaluation of a naïve Bayes model
(NBM) for generating differential diagnosis of bone tumors.
Based on a historical teaching collection that started with 1664
cases of more than 60 types of primary and secondary bone
tumors and associated syndromes, we used ePad, a web-based
structured annotation tool, to annotate 811 cases with 18 se-
mantic features each [11]. These 811 images and their associ-
ated annotations represent the structured data used to create
the NBM.

Materials and Methods

Institutional review board approval was obtained. The require-
ment for informed consent was waived as this was a retrospec-
tive review of de-identified radiologic images with only age,
gender, and brief clinical notes/diagnosis.

Case Selection

The raw data set is a collection of 1664 analog radiographic
cases of bone tumors at a tertiary care teaching hospital. Cases
were collected by one professor (none of the authors in this
work are owners of the collection) between approximately
1955 and 2005 and in almost all instances were copy films.
Two students used a t ransparency f i lm scanner
(PACSGEAR—Lexmark, Pleasanton, CA) to digitize all ra-
diographs in each case at 600 dpi. A total of 22,864 images
were captured from the 1664 cases. Upon review by a mus-
culoskeletal radiologist, cases were subjectively categorized
into 124 low-quality, 675 medium-quality, and 865 high-
quality cases. High-quality cases included excellent represen-
tation of the lesion in terms of radiographic exposure and

resolution, as well as lack of extraneous markings such as
wax pencil or film labels. Low-quality cases included under-
or over-exposed images that may have exhibited motion arti-
fact or interfering overlying markings. Taking the high-quality
cases and a selection of the medium-quality cases, a Btop
1000^ collection was constructed which included all of the
relevant radiographic projections for each lesion; 2147 sepa-
rate images comprise this collection. During the annotation
process (see below), 189 cases were not annotated fully be-
cause they had limited visibility of the lesions (more common
for lesions in the spine or facial bones, for example) or sub-
jectively lower overall image quality. This curation process
resulted in 811 cases. The pathologic diagnosis was obtained
by histology for the majority of cases, with a minority of cases
diagnosed by pathognomonic features and imaging follow-up,
resulting in 66 unique diagnoses.

Feature Selection

The naive Bayes model contains 18 input attributes/features (2
clinical and 16 qualitative radiographic features) (Fig. 1a, b).
Feature selection was based on clinical experience and existing
knowledge of radiologic observations commonly used to char-
acterize bone tumors, such as bony expansion, bone location
(transverse and axial), and patient age (in decades). Bone tumor
literature was reviewed to refine or add features that show either
high acceptance by the community or statistical significance in
stratifying disease, such as border type (1ABC, 2, 3) and end-
osteal scalloping [1, 12–16]. For example, we initially consid-
ered using an attribute called Bcortical destruction^ with
assigned binary values: yes/no. Based on the work by
Murphey et al. on x-ray cortical observations in chondroid tu-
mors, we adopted their more formal and quantitative grading
system Bdepth of endosteal scalloping^ which ranks endosteal
invasion by depth, from 0 (cortex normal) to 4 (full-thickness
cortical breakthrough/destruction) [12].

Annotation

For each of the 811 cases, 1 image (AP view or image with
best visualization of the tumor, excluding film markings, film
degradation, or overlapping bowel/bones/landmarks if possi-
ble) was selected for annotation with the 18 clinical and qual-
itative features by MSK radiologists (XX, 22 years experi-
ence, and YY, 6 years experience). All annotations were
reviewed for discrepancies by XX who served as adjudicator
and determined a consensus. Interobserver agreement statis-
tics were not provided by ePad and were not measured. For
consistent encoding, annotations were performed using ePad,
a freely available quantitative imaging informatics platform
which provides an implementation of the Annotation and
Image Markup (AIM) standard [11]. Attribute values for each
field were derived from RadLex if possible [17], and
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supplemented by attributes derived from clinical experience or
literature descriptions of bone tumor observations [12].

Validation

While a total of 811 fully annotated cases/images were avail-
able, several diagnoses had small sample sizes constituting only
one to three examples, such as Erdheim-Chester disease and
Rosai-Dorfman. To avoid over-fitting, these sparse diagnoses
were excluded from further study. By including only diseases
that were represented by at least five case examples, the overall
experimental dataset was reduced to 710 cases. To assess the
effect of sample size on algorithm performance, we created
three subsets from the collection of 710 cases using a progres-
sively higher cutoff for minimum sample size, as follows:

Subset A (Most Inclusive, Includes Common, Intermediate,
and Rare Cases)

Minimum five examples of each diagnosis: 710 cases, 29
unique diagnoses, shown in Table 1.

* Note that Brare^ reflects the relative number of examples
of the diagnosis within our population, and not reflective of
disease prevalence. Subset A uses a cutoff of at least five
samples per diagnosis and therefore includes Brare,^ interme-
diate, and common prevalence diagnosis.

Subset B (Includes Intermediate and Rare Cases)

Minimum 18 examples of each diagnosis: 559 cases, 14
unique diagnoses.

Subset C (Includes Common Diagnosis Only)

Minimum 30 examples of each diagnosis: 478 cases, 10
unique diagnoses.

For each subset A, B, and C, a leave-one-out cross valida-
tion analysis was performed. For each test input, the machine
produced a ranked list of diagnoses with each diagnosis
assigned a probability. We established two outcome metrics
by comparing machine outputs with the proven diagnosis for
each test case. Specifically, we defined primary accuracy as
whether the correct pathological diagnosis was the top-ranked
machine output; we defined differential accuracy as whether
the correct pathological diagnosis was within the top three
machine predictions. The latter metric is intended to reflect
clinical practice by providing a short differential list of possi-
ble diagnoses.

Bayes Model

The naive Bayes model (NBM)was developed usingmodern
web technologies (front-end JavaScript/HTML5; backend
anddatabasePHP/MySQLrunningonanAPACHEweb serv-
er). The system is fully operational but is used only for re-
search. The classifier generates probabilities for all diagnoses
based on the 18 clinical and observational attributes (Table 3),
which are calculated in real time from knowledge encoded in
the database. Conditional probabilities for all diagnoses are
computed and sorted in descending order. The diagnoses are
displayed in descending probability as a ranked Bdifferential
diagnosis^ (Fig. 2). Table 4 shows the raw computations that
are generated by theNBMin real time for anyunknownquery.

Fig. 1 a ePad annotation interface. The image is displayed, and the
region of interest is drawn (green outline). The annotation template is
filled in by clicking radio buttons on the interface. The program
requires completion of all fields before annotation is validated and

saved. This lesion is an aneurysmal bone cyst of the talus. b More
complete display of the 18 fields annotated for each case (color figure
online)

642 J Digit Imaging (2017) 30:640–647



Results

The results of the cross validation studies are summarized in
Table 2. For subset A (710 cases, 29 diagnoses), primary ac-
curacy was 44%, and differential accuracy was 60%. In other
words, the machine predicted the correct diagnosis as the top-
ranked result in 44% of leave-one-out trials, and predicted the
correct diagnosis with the top three ranked results in 60% of
the trials. For subset B (559 cases, 14 diagnoses), primary
accuracy was 56%, and differential accuracy was 73%. For

subset C (478 cases, 10 diagnoses), primary accuracy was
62%, and differential accuracy was 80%.

Discussion

We constructed and evaluated a naïve Bayes model for
predicting bone tumor diagnosis on a collection of more than
60 unique primary and secondary bone tumors and tumor-like
conditions derived from a historical collection that began with
1664 digitized radiographic cases. To avoid over-fitting, we
restricted the final dataset to 710 cases so that each diagnosis
was represented by a minimum of five samples. The strength
of a Bayesian model is that relative probabilities can be pro-
vided along with diagnosis predictions, allowing for a likeli-
hood ranked Bdifferential diagnosis^ (Fig. 2), similar to what
is typically provided in the radiology report. An accuracy
metric for the differential diagnosis makes both clinical and
intuitive sense. Alternative classifiers (e.g., support vector ma-
chine, k-nearest neighbor, random forest) cannot provide a
ranked differential diagnoses based on probabilities, but in-
stead, more abstract Bconfidence^ scores or relative ranks [7].

In Lodwick’s original report, 77.9% of cases were correctly
diagnosed as one of eight tumor types in a dataset of 77 tumors
[5]. Kahn and co-workers assessed their Bayesian network by
having medical students encode 28 cases comprising 10 diag-
noses and feeding the features into their model. In that exper-
iment, the correct diagnosis was obtained as the top choice in
68% of cases and within the top two results in 89%. In our
work, restricting to 10 diagnoses was achieved by requiring a
minimum of 30 examples of each diagnosis (subset C;
Table 1). In this subset of 478 cases, our primary and differ-
ential accuracy was 62 and 80%, respectively. These results
are comparable to those reported by Lodwick and Kahn, par-
ticularly given many differences in experimental details, in-
cluding total case number, features encoded, and computa-
tional approaches. Our work also incorporated a much more
diverse dataset comprising 29 diagnoses.

Our work demonstrates that Bayesian models can provide
meaningful results for small training sets, although clinical
utility was not tested in this work. This work focused on de-
velopment and preliminary validation using a robust leave-
one-out technique for all samples in the data. Despite Blow^
primary and differential accuracy, these accuracies do not re-
flect clinical utility. For example, theoretically, if a system is
only 60% accurate (primary diagnosis or prediction) but more
correct compared to radiologists 90% of the time, it is poten-
tially clinically useful.

The NBM provided a differential accuracy of 60% among
29 unique diagnoses and required only five samples per diag-
nosis for training/knowledge. By comparison, a deep neural
network may require thousands to train a diagnosis [18–21].
Though our results with small sample sizes are encouraging,

Table 1 Bone tumor diagnosis/classes (29 total) represented in the final
710 cases used to test the Bayes machine, ordered from most to least
samples

Bone tumor diagnosis (no. of samples)

Group 1

Osteosarcoma (83)

Enchondroma (65)

Metastasis (55)

Osteochondroma (46)

Aneurysmal bone cyst (41)

Chondrosarcoma (41)

Giant cell tumor (41)

Non-ossifying fibroma (38)

Ewing sarcoma (38)

Fibrous dysplasia (30)

Group 2

Lymphoma (22)

Chondroblastoma (21)

Simple bone cyst (19)

Eosinophilic granuloma (19)

Group 3

Osteoid osteoma (16)

Non-Hodgkin lymphoma (16)

Malignant fibrous histiocytoma (14)

Chondromyxoid fibroma (11)

Osteomyelitis (11)

Periosteal chondroma (10)

Multiple myeloma (10)

Osteoblastoma (10)

Ganglion cyst (9)

Paget disease (9)

Giant cell reparative granuloma (8)

Hemangioma (7)

Intraosseous lipoma (7)

Adamantinoma (7)

Plasmacytoma (6)

In the leave-one-out validations, subset A consists of all 29 diagnoses
(groups 1, 2, and 3) and is most inclusive; subset B consists of 14 diag-
noses (groups 1 and 2); subset C consists of 10 diagnoses (group 1)
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we did demonstrate improved accuracy by increasing the sam-
ple size from five in subset A (primary accuracy 44%) to 30 in
subset C (primary accuracy 62%). However, more sample train-
ing size does not always result in improved accuracy of classi-
fication. In a two-layer neural network for bone lesions by
Reinus, 29% (4/14) of diagnoses with training size of at least
20 had among the lowest primary accuracy scores (13–39%),
and overall performance improved only marginally for diagno-
sis trained with more samples [7]. Despite this performance, Dr.
Reinus’ and similar work are novel examples of the promise of
unsupervised machine learning in musculoskeletal radiology.

Unlike some radiology classification tasks in which accu-
racy is based on a binary decision between Bbenign^ and
Bmalignant,^ the wide variety of possible diagnoses in this

data set adds complexity to the diagnostic task. There is a
trade-off between clinical utility for decision support (more
diagnoses) and accuracy (reduced using fewer training sam-
ples). Therefore, the NBM is designed for continuous
Blearning^ as the Bayes probabilities are calculated in real
time, and incremental Bknowledge^ or new labeled samples
can be added to the system any time. Bone tumors are also
unique in that external data is available, such as Dahlin’s text-
book reporting the skeletal distribution of lesions as well as
patient gender and age (22 cases). These probabilities
reflecting disease incidence can be useful adjuncts to the fea-
tures we have encoded for our specific dataset.

An important distinction should be made between retrieval
and ranking. Even if image retrieval systems can find a labeled
sample identical in appearance to the unknown query, the
actual diagnosis can be different from the retrieved image
because disease can have overlapping imaging appearances.
Ideal intelligent machines should suggest a diagnosis based on
similar appearances, but, more importantly, provide a differ-
ential of statistically likely alternates based on demographic,
clinical, and observational data (Fig. 3). Bayesian models hold
a significant advantage by accounting for disease prevalence.
Alternative machine learning approaches such as deep learn-
ing or support vector machines provide abstract Bconfidence
scores^ [7] and are Bblack boxes.^ Table 4 shows example
raw computations that are generated by the NBM in real time
for any unknown query. Although this output is normally
suppressed to the user, our NBM can display this in debug

Fig. 2 Example machine output. The machine generates probabilities for
all diagnoses based on the 18 clinical and observational instances of an
unknown (left image). The diagnoses with conditional probabilities >0%
are displayed in descending order as a BRanked Differential Diagnosis^
(upper right, yellow box). Raw fractions are displayed for probabilities
<1%. The differential accuracy is whether the correct pathological

diagnosis is within the top three machine predictions. After ranking the
diagnoses, the system displays images from cases with the same top
differential and bone location (middle right column images). The
highest ranked diagnosis or top differential is compared with truth
(lower right yellow box)

Table 2 Bayes machine performance showing primary and differential
accuracy using leave-one-out validation

Subset Minimum no.
of samples/
diagnosis
cutoff

Total
cases

Distinct
diagnosis

Naïve Bayes
primary
accuracy

Naïve Bayes
differential
accuracy

A 5 710 29 44% 60%

B 18 559 14 56% 73%

C 30 478 10 62% 80%

Three subsets were trained and validated by varying the size of the min-
imum cutoff number for class training
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mode, allowing for the user to understand the machine’s de-
cision process, specifically identifying the attribute/value vec-
tors that most significantly contribute to each diagnoses.

We consider the results reported here to be preliminary, as
the outcomes will likely change with increasing case numbers,
refinements of features annotated, and improvements in the
computational model. The current image dataset itself is lim-
ited, as it represents a set of cases collected over many years
based on the interests of a single radiologist, with varying
image quality. Furthermore, the prevalence of cases within
the dataset does not reflect the day-to-day prevalence of focal
bone lesions presenting for workup. There may also be qual-
itative differences in feature selection between the two mus-
culoskeletal radiologists. The current work also is limited be-
cause it is based entirely on semantic descriptions of each
lesion’s visual appearance. The use of image processing and
computer vision techniques to directly analyze edge, shape,
size, and texture features of bone lesions on radiographs is a
promising alternative [22].

There are additional limitations of our work inherent to
Bayesian algorithms. Bayes classifiers assume that features
are independent (naïve), and that each feature contributes in-
dependently to class probability. Common pre-processing
steps to identify strong correlations that can lead to overcon-
fidence include computing a weighted correlation matrix for
continuous variables or performing chi-square tests for nom-
inal variable pairs. A second limitation of our model is the
assumption that attribute values exist for all examples in the
training set, and if they do not, then the differential should not
be considered. For example, if osteosarcoma always exhibits
osteoid matrix, and if an unknown exhibits chondroid matrix,
then the class probability for osteosarcoma of the unknown
instance is zeroed out (the class probability is the product of
each of the posteriors). Laplace correction is a technique used
in Bayesian models to correct for the situation in which an
attribute value has never before been seen in the population by
inserting small default probabilities for missing attributes in-
stead of zero, enabling probability calculation for sparse data
[23]. These implementations and their validation were beyond
the scope of this work.

The eventual goal of a machine learning system is to im-
prove clinical diagnosis, and ultimately patient outcomes.
Neither of these goals has been tested with our NBM.
Indeed, we could find no useful reference data on the actual
clinical accuracy of bone tumor diagnosis as currently per-
formed by radiologists without computer support. Lodwick
estimated that he was 80% accurate in predicting the histolog-
ic subtype of bone tumors, but his accuracy varied across
tumor types [5]. Based on our own intuition, an accuracy of
80% is probably reasonable for highly experienced experts.
Tumor appearances overlap considerably, and histological
analysis is ultimately needed for final diagnosis, even though
pathologists cannot always agree on bone tumor diagnoses.

No individual is likely to achieve 100% accuracy. Thus, the
output of a machine learning system should be compared
against the best possible human performance. Looking toward
future work, one of our goals is to test the ability of our system
to improve diagnostic accuracy across readers with a wide
range of experience, with the hypothesis that decision support
will benefit those with less experience [22].

Conclusions

We built and implemented a probabilistic classifier based on a
naive Bayesian model that incorporates 18 features, both ra-
diographic observations and demographic characteristics, to
rank bone tumor diagnoses. During these trials, the model
returned relevant diagnoses for the majority of unknown test
cases. Using this approach, we were able to classify a wide
range (29 types) of lesion diagnoses, with the potential to
classify more than 60 diagnoses if we can increase sample
sizes for rare disorders. Bayesian models can Blearn^ from
external data on a per-feature basis, enabling incorporation
of external knowledge such as Dahlin’s Bone Tumors, a refer-
ence of anatomic and demographic statistics of more than
10,000 bone tumors based on the Mayo Clinic registry [24].
This is the reason we designed our NBM to scale—it can add
more training samples and diagnostic classes dynamically in
real time. We are currently improving the system to be able to
Blearn^ from external knowledge (Dahlin, PubMed studies,
etc.) so that each attribute can be more reflective of true dis-
ease prevalence, rather than reflective of the knowledge that is
encoded in only our collection, potentially improving tumor
prediction.

Compliance with Ethical Standards Institutional review board ap-
proval was obtained. The requirement for informed consent was waived
as this was a retrospective review of de-identified radiologic images with
only age, gender, and brief clinical notes/diagnosis.

Fig. 3 Two expansile bone lesions with the same imaging attributes but
of different tumors: aneurysmal bone cyst (left) and non-ossifying fibro-
ma (right)
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Appendix

Table 3 Detailed list of 18 features and all possible values in Naïve Bayes model

Feature Values

Age Decade bins: 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, 90–100+
Gender Male, female
Number of lesions Solitary, multiple
Bone location Carpals, clavicle, femur, fibula, foot, hand, humerus, iliac bone, ischium,

mandible, patella, pubis, radius, rib, sacrum, scapula, skull, sternum, tarsals, tibia, ulna, vertebrae
Longitudinal

location
Apophysis, diaphysis, epiphysis, metadiaphysis, metaphysis, n/a

Proximal vs. distal Proximal, middle, distal, not applicable
Transverse location Medullary cavity, endosteum, cortex, periosteum, sessile, pedunculated, juxtacortical, soft tissue
Distribution Central, eccentric, n/a
Density Normal, ground glass, lytic, sclerotic, mixed lytic, and sclerotic
Matrix/texture Normal, bone forming or osteoid, chondroid, septated, coarse trabeculae, central calcification
Transition

zone/border
Geographic 1A (narrow sclerotic), geographic 1B (narrow non-sclerotic), geographic 1C (wide non-sclerotic),

permeative/destructive/punched out, unable to determine border or n/a (e.g., osteochondroma does not have a border)
Cortex Endosteal scalloping grade: 0 = none, 1 = 0–25%, 2 = 25–50%, 3 = 50–75%,

4 = 75%+, where % = approximate depth of scalloping; cortical thickening, periosteal scalloping (any degree), n/a
Periosteum No periosteal reaction, solid periosteal reaction, lamellated periosteal reaction, interrupted periosteal reaction, codman triangle, sunburst
Lesion to shaft ratio 0–25%, 25–50%, 50–75%, 75–100%, >100%, n/a
Physis Closed, open
Expansion Non-expansile, expansile
Soft tissue mass Yes, no
Pathologic fracture Yes, no

Table 4 Raw computations that are generated by the NBM in real time for any unknown query

Feature Chondroblastoma Giant cell tumor Ganglion cyst

Age bin 0.28 0.36 0.22

Gender 0.61 0.51 0.44

Number of lesions 1.00 1.00 0.88

Bone location 0.14 0.34 0.11

Longitudinal location 0.38 0.04 0.22

Proximal vs. distal 0.14 0.58 0.44

Transverse location 0.95 0.97 0.77

Distribution 0.76 0.58 0.66

Density 0.57 0.87 0.88

Matrix/texture 0.47 0.68 0.77

Transition zone/border 0.57 0.75 0.11

Cortex 0.57 0.95 0.44

Periosteum 0.95 0.75 1.00

Lesion to shaft ratio 0.28 0.07 0.11

Physis 0.76 1.00 0.88

Expansion 1.00 0.48 0.88

Soft tissue mass 0.95 0.90 1.00

Pathologic fracture 0.90 0.70 1.00

Diagnosis probability 50% 48% 2%

When a query is submitted, the Naïve Bayes machine computes prior probabilities for all attributes given the query instances for each feature. The
product of the prior probabilities is factored and then normalized to generate an overall class probability, or probability of diagnosis for all diagnoses. The
diagnoses with conditional probabilities >0% are displayed in descending order as a BRanked Differential Diagnosis.^ In this example, demographic and
radiographic features were entered for an unknown lytic lesion in the distal diaphysis of the femur in a 25-year-old male patient. The prior probabilities
for each of the 18 attributes and overall normalized diagnosis probability are calculated in real time. The top three Bdifferential^ are shown below with
raw prior probabilities. This data is normally suppressed to the user
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